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Abstract. We investigate satisfiability in the monadic fragment of first-
order Gödel logics. These are a family of finite- and infinite-valued logics
where the sets of truth values V are closed subsets of [0, 1] containing 0
and 1. We identify conditions on the topological type of V that determine
the decidability or undecidability of their satisfiability problem.

1 Introduction

Monadic logic is a first-order logic in which all predicates are unary. Classical
monadic logic is a rather simple fragment: decidable (both the validity and sat-
isfiability problem) and having finite model property. The same does not hold
for many-valued monadic logics in which a rather complex landscape appears
and many questions are still open, see e.g. [3, 9, 10].

The family of (finite- and infinite-valued) Gödel logics is a prominent example
of many-valued logics. Gödel logics, defined in general over sets of truth values V
which are closed subsets of [0, 1] containing both 0 and 1, are the only many-
valued logics which are completely specified by the order structure of V [4]. This
fact characterizes Gödel logics as logics of comparative truth and renders them
an important case of so-called fuzzy logics, see [8].

Different choices of V in general induce different Gödel logics, see [4, 6, 13].
For V = {0, 1} the resulting logic coincides with classical logic.

Validity for monadic Gödel logic with V = [0, 1] was shown to be undecidable
in [2]. Note that in contrast with classical logic, in Gödel logics validity and sat-
isfiability are not dual concepts. A general investigation of the (un)decidability
status for the validity problem in monadic Gödel logics was carried out in [3],
where it was shown that with the possible exception of Gödel logic G↑ in which
V = {1 − 1/n : n ≥ 1} ∪ {1}, validity is undecidable when V is infinite, even
when restricted to prenex formulas.

In this paper we investigate the (1-)satisfiability problem SATm in monadic
Gödel logics. We identify conditions on the topological type of V which charac-
terize Gödel logics with decidable and with undecidable SATm. SATm is shown
to be decidable for Gödel logics in which 0 is an isolated point in V (i.e., 0 has
Cantor-Bendixon rank ∣0∣CB = 0, see e.g. [12]). Finite-valued Gödel logics being
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prominent examples (and any witnessed Gödel logic [11] as well as any prenex
Gödel logic can be treated in the same way). In the remaining Gödel logics the
presence of at least three predicate symbols, one of which is a constant different
from 0 or 1, makes SATm undecidable. A complex argument is used to show
that without this constant predicate, SATm remains undecidable for all Gödel
logics in which 0 is a limit point of limit points in V (i.e., ∣0∣CB ≥ 2). Gödel
logic with V = [0, 1] being a prominent example. The (un)decidability status of
SATm is left open for Gödel logics in which ∣0∣CB = 1 in V and no constant
predicate is available; this case is shown to contain only one logic: Gödel logic
G↓ in which V = {1/n : n ∈ ℕ} ∪ {0}. SATm of monadic Gödel logics extended
with the projection operator △ of [1] is also investigated. This operator allows
one to recover classical reasoning inside Gödel logics. We show that the addition
of △ does not affect the decidability of SATm in the finite-valued case, while
it does in all infinite-valued Gödel logics (even in the witnessed case) for which
SATm is undecidable in presence of △.

2 Syntax and Semantics of Gödel Logics

The language of first-order Gödel logics is identical to that of classical logic.
We call any closed set V ⊆ [0, 1] which contains 0 and 1 a Gödel set. Let V

be a Gödel set, we denote with GV the Gödel logic based on the set of truth
values V . An interpretation (or evaluation) 'GV

for GV maps constants and
object variables to elements of a domain D, n-ary function symbols to functions
from Dn into D, and n-ary predicate symbol P to a function from Dn into V .
(We will use 'G when the truth value set V is clear from the context)

The interpretation 'GV
extends in the usual way to a function mapping

all terms of the language to an element of the domain. 'GV
evaluates atomic

formulas Q ≡ P (t1, . . . , tn) and the truth constant ⊥ as

'GV
(Q) = 'GV

(P )('GV
(t1), . . . , 'GV

(tn)) 'GV
(⊥) = 0

Extension to all formulas is given by

'GV
(A→ B) =

{
1 if 'GV

(A) ≤ 'GV
(B)

'GV
(B) otherwise,

'GV
(A ∧B) = min('GV

(A), 'GV
(B))

'GV
(A ∨B) = max('GV

(A), 'GV
(B))

¬A, A ↔ B and A ≺ B abbreviate A → ⊥, (A → B) ∧ (B → A) and ((B →
A) → B), respectively; in particular 'GV

(A ≺ B) is 1 iff either 'GV
(A) <

'GV
(B), or 'GV

(A) = 'GV
(B) = 1. Hence the formula A ≺ B expresses

’strictly less’ but at 1 (note that 'GV
(1 ≺ 1) = 1). Let us define the distribution

of a formula A and a free variable x with respect to an interpretation 'GV

as Distr(A(x)) = {'′GV
(A(x)) : '′GV

∼x 'GV
}, where '′GV

∼x 'GV
means

that 'GV
is exactly as 'GV

with the possible exception of the domain element



assigned to x. The semantics of quantifiers is given by the infimum and supremum
of the corresponding distribution, that is

'GV
(∀xA(x)) = inf Distr(A(x)) 'GV

(∃xA(x)) = sup Distr(A(x)).

In the case that all infima and suprema are actually realized by an element, i.e.,
all infima are minima and all suprema are maxima, we speak about witnessed
Gödel logics, see e.g. [11].

Definition 1. A formula A is valid or is a tautology (resp. a positive tautology)
in GV if for every interpretation 'GV

, 'GV
(A) = 1 (resp. 'GV

(A) > 0). A is
1-satisfiable, or simply satisfiable, if there is an interpretation 'GV

such that
'GV

(A) = 1; otherwise A is said to be unsatisfiable.

In contrast with classical logic, in Gödel logics validity and satisfiability are not
dual concepts. However the following relation holds: A is a positive tautology if
and only if ¬A is unsatisfiable.

Consider the unary operator △ with the following meaning [1]:

'GV
(△A) =

{
1 if 'GV

(A) = 1

0 otherwise.

We will investigate monadic Gödel logics (with and without the operator △)
i.e., in which all predicate symbols are (at most) unary and no function symbol
occur. Every Gödel set V induces a logic GV over the language without △ and
a logic G△V if △ is present. Standard Gödel logic is G[0,1]; i.e., the logic over the
full real unit interval as truth value set, see, e.g., [8,16]. We use Gn to denote the
n-valued Gödel logic for n ≥ 2. Let G be a Gödel logic, we denote with TAUTmG
and SATmG the validity and satisfiability problems of monadic G, respectively.

2.1 Cantor-Bendixon ranks and Gödel sets

In Gödel logics, the validity of a formula depends only on the relative ordering
and the topological type of the truth values of atomic formulas, and not on their
specific values. It is therefore important to investigate the topological structure
of the underlying truth values sets of Gödel logics, see [4, 13]. We recall some
definitions for the theory of polish spaces, details may be found in [12].

Definition 2. A limit point of a topological space is a point that is not isolated,
i.e., for every open neighborhood U of x there is a point y ⊂ U with y ∕= x. For
any topological space X let X ′ = {x ∈ X : x is limit point of X}. We call X ′

the Cantor-Bendixon derivative of X and the operation itself Cantor-Bendixon
derivation. Using transfinite recursion we define the iterated Cantor-Bendixon
derivatives X�, � ordinal, as follows:

X0 = X X�+1 = (X�)′ X� =
∩
�<�

X�, � limit ordinal.

For any polish space X, the least ordinal �0 such that X�0 = X� for all � > �0

is called the Cantor-Bendixon rank of X. For any x ∈ X, we define its (Cantor-
Bendixon-)rank ∣x∣CB = sup{� : x ∈ X�}.



3 Decidability Results

As is well known, the satisfiability problem for monadic classical logic (i.e., G2)
is decidable, whereas already a single binary predicate symbol leads to unde-
cidability. We show below that this result can be generalized to monadic Gödel
logics GV in which 0 is an isolated point in V (i.e., ∣0∣CB = 0); satisfiability in
these logics, which includes Gn, coincides with satisfiability in monadic G2. The
same result holds also for any witnessed or prenex monadic Gödel logic. The
addition of △ to Gn does not change the decidability status of SATmG�

n
, though

satisfiability is not anymore equivalent to satisfiability in G2.

Theorem 1. Let V be any Gödel set with ∣0∣CB = 0. SATmGV
is equivalent to

SATmG2
.

Proof. Let Q be any formula of GV . If Q is satisfiable in monadic classical logic
then Q is satisfiable in GV . For the converse direction, consider any interpreta-
tion 'G of GV such that 'G(Q) = 1. An interpretation 'CL of classical logic
such that 'CL(Q) = 1 is defined as follows: for any atomic formula A

'CL(A) =

{
1 if 'G(A) > 0

0 otherwise.

It is easy to see that for each formula P , (∗) 'G(P ) = 0 if and only if 'CL(P ) = 0
and 'G(P ) > 0 if and only if 'CL(P ) = 1. The proof proceeds by induction on
the complexity of P and all cases go though for all Gödel logics except when P
has the form ∀xP1(x); in this case, being 0 an isolated point in V , 'G(P ) = 0 if
and only if there is an element u in the domain of 'G such that 'G(P1(u)) = 0;
by induction hypothesis 'CL(P1(u)) = 0 and hence 'CL(∀xP1(x)) = 0. □

Corollary 1. Satisfiability in the existential fragment of all monadic Gödel log-
ics coincides with satisfiability in monadic classical logic.

Corollary 2. Satisfiability in monadic witnessed Gödel logics coincides with
satisfiability in monadic classical logic.

Corollary 3. Satisfiability in prenex1 monadic Gödel logics coincides with sat-
isfiability in monadic classical logic.

Proof. Let Q = Qx̄P be any prenex formula, were Qx̄ is the formula prefix
and P does not contain quantifiers. The proof is similar to that of Theorem 1.
Assume that 'G(Q) = 1. As above we can prove (∗) for P . 'CL(Q) = 1 easily
follows by induction on the number n of quantifiers in Qx̄. □

This result contrasts with the undecidability of the validity problem proved in [3]
for all prenex monadic Gödel logics with the exception of Gn and (possibly) G↑.

Corollary 4. SATmGn
coincides with SATmG2

.

1 In general Gödel logics do not admit equivalent prenex formulas, see e.g. [4].



Consider Gn extended with △; the formula ¬¬A ∧ ¬△A is satisfiable in G△n ,
with n > 2 (take any interpretation 'G such that 0 < 'G(A) < 1) but it is
not in classical logic. This shows that satisfiability in G△n is not the same as
satisfiability in classical logic. Nevertheless we have

Theorem 2. SATm
G△
n

is decidable.

Proof. Proceed similarly to the decidability proof of TAUTm
G△
n

in [3]. Given any

monadic formula P , it is indeed enough to consider interpretations with domain
{1, . . . , nk}, where k is the number of different predicate symbols occurring in

P . The number of such interpretations is finite (at most nk⋅n
k

). □

4 Undecidability Results

In this section we prove that SATmGV
is undecidable in the following cases: all

infinite-valued Gödel logics with △ (Section 4.1), all Gödel logics where 0 is not
isolated and there are three predicates, one of which is a constant evaluated
between 0 and 1 (Section 4.2), and all Gödel logics where 0 has at least Cantor-
Bendixon rank 2, i.e., 0 is a limit point of limit points (Section 4.3).

Our results adapt and generalize the undecidability proof of TAUTmG[0,1]

sketched in [7]. Consider a generic formula A in the classical theory CE of
two equivalence relations ≡1 and ≡2. Without loss of generality we can assume
that A is in prenex and disjunctive normal form, i.e., A is of the form:

A = Q∗
⋁
j

⋀
k

(xkj ≡i ykj )l

where Q∗ is the formula prefix and l is either −1, in which case the atomic
equivalence is negated, or 1, in which case it is positive (not negated).

In the subsections below we will translate A into formulas of GV by replacing
each term (xkj ≡i ykj )l in A by suitable �((ukj ≡i vkj )l). As notational extension

we write �(A) = Q∗
⋁
j

⋀
k �((xkj ≡i ykj )l).

Lemma 1. Given two interpretations 'CE and 'G. If for each term ukj and vkj

'CE((ukj ≡i vkj )l) = 1 ⇔ 'G(�(ukj ≡i vkj )l) = 1

(with l = −1, 1) and 'G(�(ukj ≡i vkj )l) = 1 or 'G(�(ukj ≡i vkj )l) ≤ k < 1 then

'CE(A) = 1 ⇔ 'G(�(A)) = 1.

4.1 Infinite-valued Gödel logics with △

We show the undecidability of SATG△
V

, where V is any infinite Gödel set. Our

argument, which applies also to all infinite-valued witnessed Gödel logics with
△, is similar to that for the undecidability of TAUTG△

V
in [3].



Theorem 3. Let V be any infinite Gödel set. Satisfiability of monadic formulas
in G△V , with at least two predicate symbols, is undecidable.

Proof. Validity of formulas in the classical theory CE of two equivalence rela-
tions was shown in [15] to be r.e. but not recursive. As a formula in classical
logic is valid if and only if its negation is unsatisfiable, the satisfiability problem
in CE is undecidable and not even recursively enumerable. The theorem’s claim
follows by faithfully interpret CE in the monadic fragment of G△V . Indeed, let

P1 and P2 be different unary predicate symbols in G△V . A translation �(A) of

CE-formulas A into monadic G△V -formulas is simply defined by translating each
atomic formula in A as follows: �(xkj ≡i ykj ) = △(Pix↔ Piy).

Assume first that a CE-valuation 'CE of A is given such that 'CE(A) = 1.
By the Löwenheim-Skolem’s theorem we can assume the universe U of its model
to be countable, without loss of generality. Therefore also the set of equivalence
classes [u]i = {v ∣ 'CE(u ≡i v) = 1} with respect to the two equivalence relations
is countable. Since our Gödel set V is infinite, there exists a injection �:

� : {[u]1, [u]2 : u ∈ U} → V ∖ {0, 1}.

Using this injection we define the valuation in G△V as

'G(Piu) = �([u]i).

We now show that the assumptions of Lemma 1 are fulfilled:

'CE(ukj ≡i vkj ) = 1 ⇔ [ukj ]i = [vkj ]i ⇔ �([ukj ]i) = �([vkj ]i)

⇔ 'G(Piu
k
j ) = 'G(Piu

k
j ) ⇔ 'G(Piu

k
j ↔ Piu

k
j ) = 1

⇔ 'G(△(Piu
k
j ↔ Piu

k
j )) = 1 ⇔ 'G(�(ukj ≡i vkj )) = 1

We can similary prove that 'CE(ukj ∕≡i vkj ) = 1 ⇔ 'G(�(ukj ∕≡i vkj )) = 1.

Moreover, 'G(�(ukj ≡i vkj )) and 'G(�(ukj ∕≡i vkj )) are either 0 or 1. Hence, by
Lemma 1, 'G(�(A)) = 1.

Now assume that there exists a valuation 'G in G△V such that 'G(�(A)) = 1.
Define the valuation 'CE in classical logic as

'CE(u ≡i v) = 1 iff 'G(�(u ≡i v)) = 1

the above equivalence chains together with Lemma 1 give 'CE(A) = 1. □

Corollary 5. SATm is undecidable in prenex or witnessed Gödel logics with △,
in presence of two predicate symbols.

Proof. The very same proof as for Theorem 3 can be used. □

The undecidability result applies also to the monadic fragments of L̷ukasiewicz
and product logics, two important formalizations of fuzzy logic [8]. For the for-
mer logic, Ragaz [14] proved the undecidability of the satisfiability problem in
presence of at least four predicate symbols. This result was extended in [5] to
product logic.



Corollary 6. Satisfiability of monadic L̷ukasiewicz and product logic extended
with △ is undecidable, in presence of at least two predicate symbols.

Proof. Follows by the embeddability of G△[0,1] in L̷ukasiewicz and product logic

extended with △, cf. [5]. □

4.2 Infinite Gödel sets with ∣0∣CB > 0

We show the undecidability of SATmGV
where V is infinite, the truth value 0 has

Cantor-Bendixon rank ∣0∣CB > 0 in V (i.e., 0 is not isolated) and there is a (0-ry)
predicate S which is always evaluated to a real between 0 and 1.

Theorem 4. SATmGV
is undecidable in any Gödel logic GV where ∣0∣CB > 0

in presence of at least three predicates one of which is a constant S such that
0 < 'G(S) < 1 for each valuation 'G.

Proof. Proceed similarly to that of Theorem 3. Here we define the (local) trans-
lation � as follows:

�(xkj ≡i ykj ) = (Pix
k
j ↔ Piy

k
j )

�(xkj ∕≡i ykj ) = (Pix
k
j ↔ Piy

k
j )→ S

and translate the CE formula A as �(A) = �(A)∧ ∀x(P1x ≺ S)∧ ∀x(P2x ≺ S).
Assume first that a valuation 'CE of A in classical logic is given such that

'CE(A) = 1. Following the first steps of the proof of Theorem 3 we define

'G(Piu) = �([u]i)

but here the injection � maps equivalence classes into truth values below 'G(S):

� : {[u]i, [u]2 : u ∈ U} → V ∩ (0, 'G(S)).

This can always be achieved as 0 is not isolated, thus, below any given point
in V , in our case below 'G(S), there are at least countably many truth values.

We now show that the remaining assumptions of Lemma 1 are fulfilled (by
definition 'G(�(ukj ≡i vkj )) and 'G(�(ukj ∕≡i vkj )) are either 1 or below 'G(S)).

Obviously 'CE(ukj ≡i vkj ) = 1 iff 'G(Piu
k
j ) = 'G(Piv

k
j ). Moreover

'CE(ukj ∕≡i vkj ) = 1 ⇔ [ukj ]i ∕= [vkj ]i ⇔1 �([ukj ]i) ∕= �([vkj ]i)

'G(Piu
k
j ) ∕= 'G(Piu

k
j ) ⇔ 'G(Piu

k
j ↔ Piu

k
j ) ≤ 'G(S)

⇔ 'G((Piu
k
j ↔ Piu

k
j )→ S)) = 1 ⇔ 'G(�(ukj ∕≡i vkj )) = 1

(where 1 follows from the injectivity of �). By Lemma 1, we have 'G(�(A)) = 1
and by the definition of 'G, 'G(�(A)) = 1.

For the converse direction, assume to have a valuation 'G such that 'G(�(A)) =
1. Define the valuation 'CE in a straightforward way as

'CE(u ≡i v) = 1 iff 'G(�(u ≡i v)) = 1.

Notice that by 'G(∀x(Pix ≺ S)) = 1 follows that 'G(Pix) < 'G(S) < 1 for all
x. The equivalences above together with Lemma 1 give 'CE(A) = 1. □



4.3 Infinite Gödel sets with ∣0∣CB ≥ 2

We show the undecidability of SATmGV
where V is infinite, 0 has Cantor-Bendixon

rank ∣0∣CB ≥ 2 (i.e., 0 is limit point of limit points) and the language of GV

contains at least three predicate symbols. G[0,1]being a prominent example.

Theorem 5. SATmGV
is undecidable when ∣0∣CB ≥ 2 in V and in presence of at

least three predicate symbols.

Proof. Proceed similarly to the proofs of Theorem 4. First notice that the cen-
tral property used in this proof (cf. Lemma 1) is that there is a way to decide
whether an evaluation is below 1 or it is 1. Indeed, for the reverse direction of
the undecidability proof (i.e., given a satisfying Gödel interpretation 'GV

we
have to construct a satisfying interpretation in CE) we need to select an open
interval in V strictly between 0 and 1, objects with valuations of the equiva-
lence predicates Pi within that interval, and use them to define the equivalence
classes in CE. In Theorem 4, the predicate constant is used to this purpose.
Here a formula ∃y∃z(Piz ≺ Piy ∧ . . . ) would not be enough as our ‘strictly less’
relation ≺ collapses at 1 (see Section 2) and therefore we cannot be sure that
'GV

(Piy) and 'GV
(Piz) are choosen below 1. To overcome this problem we

use the third predicate P whose valuation we force to be a decreasing sequence
to 0. This can be expressed by ¬∀xPx∧∀x¬¬Px, as the first conjunct says that
the infimum of all evaluations of P is 0, and the second that every valuation
of P is bigger than 0. So we can say that either the valuation of Px is 1, or
we can find y and z ‘below’ x (i.e., the valuations of Py and Pz are below the
valuation of Px) defining the needed open interval. This leads to the formula
∀x(Px∨∃y∃z(Pz ≺ Py ∧Py ≺ Px)); on the other hand requiring the existence
of objects w with 'GV

(Piw) within the interval can be simply expressed by
∃w(Pz ≺ P1w ≺ Py ∧ Pz ≺ P2w ≺ Py).

Consider now the forward direction of the proof, i.e., constructing a satisfying
valuation in GV from a satisfying valuation in CE. The use of the formulas
above complicates the matters as we have to deal with countably many 'G(Px)
for x ∈ UG and below each of them open intervals (coming from Py and Pz),
in which the equivalence classes are interpreted in parallel. This gives rise to
the condition that the Cantor-Bendixon rank of 0 is at least 2. This ‘parallel
construction’ also hints that in translating our formula A of CE into a formula
�(A) of GV we will duplicate the universe UCE for each interval so that we can
faithfully embed the equivalence classes of CE into the respective intervals. This
leads to the fact that in the translated formula �(A) the quantifiers act over a
much larger universe, as we have to duplicate the universe for each interval. To
confine the valuations of elements of the ’correct’ interval we add in the formula
(1a) below disjuncts evaluating to 1 for objects outside the considered interval.

We are now ready to present the formal definition of the translation of our
formula A in CE into GV which uses the (not anymore local) translation �a,b(A),



where a and b define the interval [b, a] in which the evaluation takes place:

�a,b(∀rB) = ∀r(P1r ≺ Pb ∨ Pa ≺ P1r ∨ P2r ≺ Pb ∨ Pa ≺ P2r ∨ �a,b(B)) (1a)

�a,b(∃rB) = ∃r((Pb ≺ P1r ≺ Pa) ∧ (Pb ≺ P2r ≺ Pa) ∧ �a,b(B)) (1b)

�a,b(
⋁
j

⋀
k

(rkj ≡i skj )l) =
⋁
j

⋀
k

�((rkj ≡i skj )l) (1c)

�a,b(r ≡i s) = (Pir ↔ Pis) (1d)

�a,b(r ∕≡i s) = ((Pir ↔ Pis)→ Pa)) (1e)

The translation �(A) of the CE formula A is defined as:

�(A) =¬∀xPx ∧ ∀x¬¬Px∧ (2a)

∀x(Px ∨ ∃y∃z[ (2b)

Pz ≺ Py ∧ Py ≺ Px ∧ (2c)

∀u(Pu→ Pz ∨ Py → Pu) ∧ (2d)

∃w(Pz ≺ P1w ≺ Py ∧ Pz ≺ P2w ≺ Py) ∧ (2e)

�y,z(A)]) (2f)

As in the proofs of Theorems 3 and 4 we assume first that 'CE(A) = 1
and we construct an interpretation 'G of GV in which 'G(�(A)) = 1. By
the Löwenheim-Skolem’s theorem we assume that the domain UCE of 'CE is
countable. As mentioned above we duplicate the universe UCE countably many
times, and for good measure we throw in another countable set of objects (cn)
which we use to define the decreasing sequence Pcn to 0. Thus, the universe of
our valuation 'G is defined as UG = {un : u ∈ UCE, n ∈ ℕ} ∪ {cn : n ∈ ℕ},
where all the un and cn are different. Note that we add the index n as superscript
to u to indicate copies of the elements u ∈ UCE.

The values of P under 'G meet the following requirements: 'G(Pcn) satisfies
(i) 'G(Pcn+1) < 'G(Pcn), (ii) limn→∞ 'G(Pcn) = 0, (iii) 'G(Pcn) ∈ V ′ ∖
{0, 1}, where V ′ is the Cantor-Bendixon derivative of V , and (iv) 'G(Pun) = 1
for all n and u ∈ UCE. This definition makes sure that 'G((2a)) = 1.

From ∣0∣CB ≥ 2 and (iii) follow that below any given 'G(Pcn) there exist
countably many disjoint open intervals, each containing countably many truth
values. Define f : ℕ→ ℕ and Kn such that: (a) f is strictly monotone increasing,
and (b) the open interval Kn = ('G(Pcf(n)+1), 'G(Pcf(n))) contains countably
many truth values. As a consequence of (a) and (b) we have (c) the intervals Kn

are all disjoint.
Since there are at least countably many truth values in each Kn there is for

any n an injection �n : {[u]1, [u]2 : u ∈ UCE} → Kn∩V . The valuation of Pi(u
n)

is then defined as

'G(Pi(u
n)) = �n([u]i).

This ensures that (2e) is satisfied. To complete the definition of the valuation of
atomic formulas we set 'G(Pi(cn)) = 1 for all n.



We will now show that 'G(�(A)) = 1. Consider the universal quantifier ∀x
in (2b) and pick up an arbitrary element x from UG. If x = un then 'G(Px) = 1
(see (iv) above). Assume now that x = cn. We choose cf(n) for y and cf(n)+1

for z. (Remember that the interval Kn defined through the evaluations of P with
these elements contains countably many truth values). It is easy to see that with
these chosen y and z the parts (2c) and (2d) are satisfied.

To prove that 'G(�(A)) = 1 it remains to show that 'G(�n(A)) = 1 where
�n is a shorthand for �cf(n),cf(n)+1

. We can indeed give a selection function
for the existentially quantified variables: If all the quantifiers in front of an
existential quantifier are instantiated, simply drop all the super-scripts in un,
consider the resulting assignment in CE, and use the object selected by the
existential quantifier there, adding the index of the current interval in which we
evaluate. Therefore the existential quantifiers are always evaluated in the current
interval, and thus the first two conjuncts of (1b) are satisfied.

On the other hand considering the universal quantifier and (1a) we see that
if the object instantiating the universal quantifier is outside the current interval,
i.e., the valuations are outside the interval defined by 'G(Py) = 'G(Pcf(n))
and 'G(Pz) = 'G(Pcf(n)+1), the evaluation of (1a) immediately becomes 1.

So we can assume in the following that all objects instantiating quantified
variables in (2f), i.e., in �y,z(A), give valuations of P1 and P2 within the interval
under discussion. The very same computations as in Theorem 4 (with Pcf(n)
playing the role of S) show 'G(�n(A)) = 1 for each n if 'CE(A) = 1. Hence
'G(�(A)) = 1 if 'CE(A) = 1.

For the reverse direction assume that 'G(�(A)) = 1. For 'G the following
hold: (i) there exists an u′ such that 0 < 'G(Pu′) < 1, as 'G((2a)) = 1; (ii)
there are y = v and z = w such that (2c)-(2e) hold. Define the universe of 'CE as

UCE = {u ∈ UG : 'G(Pw) < 'G(Piu) < 'G(Pv), i = 1, 2}
Note that UCE cannot be empty as 'G((2e)) = 1. Define a valuation 'CE as

'CE(a ≡i b) = 1 iff 'G(Pia↔ Pib) = 1

from which follows that 'CE(A) = 1 being 'CE(A) nothing but the valuation
'G(�v,w(A)). □

Notice that all infinite-valued Gödel logics GV with at least three predicate
symbols satisfy the hypothesis of the theorem above, with the exception of those
in which ∣0∣CB = 0 or ∣0∣CB = 1 in V . In the former case, Theorem 1 ensures the
decidability of SATmGV

. We show below that the latter case, which is the only
case left open, refers, in fact, to one Gödel logic: the one known as G↓ and in
which V = {1/n : n ∈ ℕ} ∪ {0}.
Proposition 1. If V has ∣0∣CB = 1, then SATGV

is equivalent to SATG↓ .

Proof. For any Gödel set V in which ∣0∣CB = 1 there is a � ∕∈ V , 0 < � < 1,
such that below � there are only isolated truth values and 0. Using the same
technique as in Theorem 1 but projecting everything above � to 1 we see that
all such V are order isomorphic to {1/n : n ∈ ℕ} ∪ {0}; i.e., to the truth values
set of G↓. □
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