
13

MUltlog and MUltseq Reanimated and Married
?

M. Baaz1 C.G. Fermüller1 A. Gil2 G. Salzer1 N. Preining1

1Technische Universität Wien, Vienna, Austria
2Universitat Pompeu Fabra, Barcelona, Spain

1 Introduction

MUltlog is a logic engineering tool that produces descriptions of various sound
and complete logical calculi for an arbitrary finite-valued first-order logic from
a given specification of the semantics of such a logic (see [1]). MUltseq, on the
other hand, is a simple, generic, sequent based theorem prover for propositional
finite-valued logics (see [6]). From its very beginning, MUltseq was intended to
be a ‘companion’ to MUltlog. So far, however, MUltseq does not directly use the
representation of sequent rules as generated by MUltlog. Moreover (due to lack
of funding, personnel and time), further development and maintenance of both
system has been stalled for some time now. It is the purpose of this abstract to
shortly describe the two systems and the current efforts to integrate them.

2 A short description of MUltlog

A many-valued logic is characterized by the truth functions associated with its
propositional operators and quantifiers. More precisely, if W denotes the set of
truth values, then a total function θ̃:Wn 7→ W is associated with each n-ary
operator θ, and a total function λ̃: (2W−{∅}) 7→ W with each quantifier λ.1

For finitely-valued logics, θ̃ and λ̃ can be specified by finite tables. The size of
quantifier tables, however, grows exponentially with the number of truth values.
Fortunately, many operators and quantifiers are defined implicitly as greatest
lower or least upper bounds with respect to some (semi-)lattice ordering on
the truth values; conjunction and disjunction as well as universal and existen-
tial quantification fall into this class. For this reason MUltlog supports several
possibilities for specifying operators and quantifiers.

The kernel of MUltlog is written in Prolog. Its main task is to compute a
certain conjunctive normal form (CNF) for each combination of operators or
quantifiers with truth values. Once given the CNF, all calculi can be obtained
more or less by syntactic transformations. The problem is not to find any such
CNFs: one particular kind can be immediately obtained from the definition of

? Partially supported by the Austrian science foundation FWF, project P16539-N04.
1 Quantifiers defined this way are called distribution quantifiers. The intuitive meaning

is that a quantified formula (λx)A(x) takes the value λ̃(U) if the instances A(d) take
exactly the elements of U as their values. E.g., the universal quantifier in classical
logic can be defined as ∀̃({t}) = t and ∀̃({f}) = ∀̃({t, f}) = f .



14

operators and quantifiers. However, these CNFs are of a maximal branching de-
gree and therefore do not lead to feasible deduction systems. MUltlog computes
CNFs that are optimal regarding the number of conjuncts. For operators and
quantifiers referring to an ordering the matter is easy: provably optimal CNFs
are obtained by instantiating a schema. For all other operators and quantifiers
more complex computations are needed, which involve resolution and a spe-
cial inference rule called combination (for a detailed description and correctness
proofs of the employed algorithms see [8]).

The output consists of a style file containing LATEX definitions specific to the
input logic, which is included by a generic document when compiled with TEX.
The style file is generated by DCGs (definite clause grammars) on the basis of the
specification read by MUltlog and the minimized CNFs computed by MUltlog.

Users of MUltlog can choose among different interfaces. One is written in
Tcl/Tk and runs under Unix and X-Windows. A second one is written in C for
PCs under DOS. A third one is written in HTML and Perl, providing access to
MUltlog via WWW: the user fills in some HTML forms and gets the output of
MUltlog as a Postscript file, obviating the need to install it on her own machine.
All three interfaces communicate with MUltlog by an ordinary text file, which
can be viewed as a fourth interface. Moreover there exists JMUltlog, a Java
applet serving roughly the same purpose as the HTML/Perl interface.

3 A short description of MUltseq

In its core, MUltseq is a generic sequent prover for propositional finitely-valued
logics. This means that it takes as input the rules of a many-valued sequent
calculus as well as a many-sided sequent and searches – automatically or inter-
actively – for a proof of the latter. For the sake of readability, the output of
MUltseq is typeset as a LATEX document.

Though the sequent rules can be entered by hand, MUltseq is primarily in-
tended as a companion for MUltlog. Provided the input sequent calculus is sound
and complete for the logic under consideration – which is always the case when
the rules were computed by MUltlog – MUltseq serves as a decision procedure
for the validity of sequents and formulas. More interestingly, MUltseq can also
be used to decide the consequence relations associated with the logic and the
sequent calculus. The problem of deciding whether a particular formula φ is
true in all models satisfying a given set of formulas ∆, i.e., whether φ logically
follows from ∆, can be reduced to the problem of proving that certain sequent
that depends only on φ and ∆ is true. Similarly, as a consequence of the De-

duction Detachment Theorem for many-valued sequents [5, 7], the problem of
finding a derivation of a sequent σ from hypotheses Σ can be reduced to proving
a particular set of sequents.

From the algebraic point of view, it is an interesting problem to determine
whether an equation or a quasi-equation is valid in a finite algebra. If we consider
the algebra as a set of truth values and a collection of finitely-valued connectives,



15

and use an appropriate translation of equations and quasi-equations to sequents,
the problem again reduces to the provability of many-valued sequents [4].

The decision procedures implemented in MUltseq help to get a better intu-
ition and understanding of some theoretical problems. For instance, it is known
that each propositional logic between the implication-less fragment of Intuitionis-
tic Propositional Calculus and Classical Propositional Calculus has an algebraic
semantics. If we consider the algebraic semantics of all these logics, we obtain
a denumerable chain which corresponds to the chain of all subvarieties of the
variety of Pseudo-complemented Distributive Lattices [7]. Each of these subvari-
eties is generated by a finite algebra, so the study of the sequent calculi obtained
by MUltlog for each of these algebras and the decision procedures in MUltseq

might help to find algebraizable Gentzen systems for the original logics.

4 Availability

Further information on MUltlog as well as the latest version of the system (ver-
sion 1.10, dated 11/07/2001) is available at

http://www.logic.at/multlog .

MUltseq is currently is at version 0.6 (dated 13/09/2002). It is available at

http://www.logic.at/multseq .

5 The marriage agenda

The input for MUltseq, i.e. the description of sequent rules for the introduction
of connectives at the sequent-positions corresponding to the truth values, is
currently prepared by hand. In principle, such a description could and should be
extracted from the output of MUltlog. Moreover, the intended use of the systems
is to investigate and compare the forms of logical rules that can be computed
from truth tables and to check simple logical statements by using these rules.
This calls for an explicit integration of MUltlog and MUltseq. The corresponding
agenda is as follows:

1. Write a conversion program that takes the output of MUltlog, as described
above, as input and generates the corresponding sequent rules in the format
used for the input of MUltseq.

2. Prepare an integrated distribution package that contains properly updated
versions of MUltlog, MUltseq and the conversion tool just described.

3. Design and maintain a joint internet page, that not only just refers to the
already available seperate pages for the two systems, but describes and il-
lustrates the intended use of the integrated system.



16

6 Future developments

Argueably, a happy marriage should result in common offspring. We list some
goals for future developments of MUltlog and MUltseq; in particular ones that
serve the aim of a better integration of the two systems.

– First order theorem proving: MUltseq should be extended to include the
application of rules for distribution quantifiers as computed by MUltlog.

– Model construction: Augmentation of MUltseq with features for the explicit
construction of (descriptions of) counter models for non-valid formulas and
invalid statements involving different versions of consequence relations.

– Extension to projective logics: In [2] the systematic construction of special
sequent calculi for projective logics, an extension of the class of finite val-
ued logics, has been described. We plan to integrate these algorithms into
MUltlog and, correspondingly, to enhance MUltseq to allow for the use of
the resulting sequent calculi in proof search.

– Cut elimination: A future version of MUltlog should construct specifica-
tions of cut elimination algorithms for finite-valued logics as described in [3].
The corresponding cut-reduction operators should then be integrated into
MUltseq, together with the possibility to apply appropriate cut rules, at
least in an interactive fashion.

References

1. M. Baaz, C. G. Fermüller, G. Salzer, and R. Zach. MUltlog 1.0: Towards an expert
system for many-valued logics. In M. A. McRobbie and J. K. Slaney, editors, 13th
Int. Conf. on Automated Deduction (CADE’96), LNCS 1104 (LNAI), pp. 226–230.
Springer-Verlag, 1996.

2. M. Baaz and C. G. Fermüller. Analytic Calculi for Projective Logics. In Neil V.
Murray (Ed.), Automated Reasoning with Analytic Tableaux and Related Methods,
TABLEAUX’99, Saratoga Springs, NY, USA, June 1999, LNAI 1617, Springer-
Verlag, 1999, pp. 36–50.

3. M. Baaz, C. G. Fermüller, G. Salzer, and R. Zach. Elimination of Cuts in First-
Order Finite-Valued Logics. Journal of Information Processing and Cybernetics,
EIK 29 (1993) 6, pp. 333-355.

4. A.J. Gil, J. Rebagliato, and V. Verdú. A strong completeness theorem for the
Gentzen systems associated with finite algebras. Journal of Applied non-Classical
Logics, vol. 9-1:9–36, 1999.

5. A.J. Gil, A. Torrens, and V. Verdú. On Gentzen Systems Associated with the Finite
Linear MV-algebras. Journal of Logic and Computation, 7:1–28, 1997.

6. A.J. Gil, G. Salzer. MUltseq: Sequents, Equations, and Beyond. Extended ver-
sion of an abstract presented at the Joint conference of the 5th Barcelona
Logic Meeting and the 6th Kurt Gödel Colloquium, June 1999; available at
http://www.logic.at/multseq

7. J. Rebagliato and V. Verdú. Algebraizable Gentzen systems and the Deduction
Theorem for Gentzen systems. Mathematics Preprint Series 175, Universitat de
Barcelona, June 1995.



17

8. G. Salzer. Optimal axiomatizations for multiple-valued operators and quantifiers
based on semi-lattices. In M. A. McRobbie and J. K. Slaney, editors, 13th Int.
Conf. on Automated Deduction (CADE’96), LNCS 1104 (LNAI), pages 688–702.
Springer-Verlag, 1996.

9. G. Salzer. Optimal Axiomatizations of Finitely-valued Logics. Information and
Computation, 162:185–205, 2000.


