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Abstract

The prenex fragments of first-order infinite-valued Gödel
logics are classified. It is shown that the prenex Gödel log-
ics characterized by finite and by uncountable subsets of
[0,1] are axiomatizable, and that the prenex fragments of
all countably infinite Gödel logics are not axiomatizable.

1 Introduction

Gödel logics are one of the oldest and most interesting
families of many-valued logics. Introduced by Gödel in
[9], they provide the first examples of intermediate logics
(intermediate, that is, in strength between classical and in-
tuitionistic logics). Dummett [7] was the first to study infi-
nite valued Gödel logics, axiomatizing the set of tautologies
over infinite truth-value sets by intuitionistic logic plus the
linearity axiom (A → B)∨ (B → A). In terms of Kripke se-
mantics, the characteristic linearity axiom picks out those
accessibility relations which are linear orders.

Gödel logics have recently received increasing attention,
both in terms of foundational investigations and in terms
of applications. One of the most surprising recent results
is that whereas there is only one infinite-valued proposi-
tional Gödel logic, there are infinitely many different log-
ics at the first-order and already when only “fuzzy quanti-
fiers” are added to the language [3, 4]. In light of the fact
that first-order infinite-valued Łukasiewicz logic is not ax-
iomatizable, it is perhaps also surprising that at least one
infinite-valued Gödel logic is r.e. [10, 14].

Our aim in the present paper is to characterize the ax-
iomatizable first-order prenex Gödel logics, i.e., those truth-
value sets whose first-order validities in prenex form are r.e.
This is a first step toward the characterization (in terms of
axiomatizability) of first-order Gödel logics in general. Our
result is that there is only one axiomatizable infinite-valued
first-order prenex Gödel logic; it is characterized by any
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closed uncountable subset of [0,1]. In fact, we give an ax-
iomatization based on a version of Herbrand’s theorem for
such truth-value sets, and then show that any countably in-
finite truth-value set has a set of prenex validities which is
not r.e.

2 Syntax and semantics

First-order Gödel logics are given by truth functions for
the connectives and quantifiers, and a set of truth values.
We work in a standard first-order language with variables
(x, y, z, . . . ), constants (a, b, c, . . . ), function symbols ( f ,
g, . . . ), predicate symbols (P, Q, R, . . . ), the predicate con-
stant ⊥, connectives (∧, ∨, →) and quantifiers (∃, ∀). ¬A
is defined as A → ⊥. The set of well-formed formulas is
denoted by Frm(L). The sets of truth values for the systems
we consider are closed subsets of [0,1] containing both 0
and 1. Interpretations are defined as usual:

Definition 2.1 Let V ⊆ [0,1] be some set of truth values
which contains 0 and 1 and is closed in R. A many-valued
interpretation I = 〈D,s〉 based on V is given by a domain D
and a valuation function s which maps n-ary relation sym-
bols to functions Dn →V , s(⊥) = 0, n-ary function symbols
to functions from Dn to D, and constants of LI and variables
to elements of D. LI is L extended by constant symbols for
all d ∈ D; if d ∈ D, then s(d) = d.

s can be extended in the obvious way to a function on all
terms in LI. The valuation of formulas in LI is defined by:

(1) I(P(t1, . . . , tn)) = s(P)(s(t1), . . . ,s(tn)).
(2) I(A∧B) = min(I(A),I(B)).
(3) I(A∨B) = max(I(A),I(B)).
(4) I(A→ B) = I(B) if I(A) > I(B) and = 1 otherwise.

Since we defined ¬A ≡ A →⊥, we also have I(¬A) = 0 if
I(A) > 0 and = 1 otherwise.

The set DistrIA(x) = {I(A(d)) : d ∈D} is called the dis-
tribution of A(x). The valuations of quantified formulas are
defined by infimum and supremum of their distributions.

(5) I(∀xA(x)) = infDistrIA(x).
(6) I(∃xA(x)) = supDistrIA(x).

I satisfies a formula A, I |= A, if I(A) = 1.
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Definition 2.2 The Gödel logic GV based on a set of
truth values V is the set of all A ∈ Frm(L) s.t. GV |= A, i.e.,
for every I based on V , I |= A. The logics GR, G↓, G↑, Gm

are based on the truth value sets

VR = [0,1] V↓ = { 1
k : k ≥ 1}∪{0}

V↑ = {1− 1
k : k ≥ 1}∪{1} Vm = {0, 1

2 , 2
3 , . . . , m−2

m−1 ,1}.

3 Relationships between Gödel logics

In the propositional case, the relationships between fi-
nite and infinite valued Gödel logics are well understood.
Any choice of an infinite set of truth-values results in the
same propositional Gödel logic, viz., Dummett’s LC [7].
Furthermore, we know that LC is the intersection of all
finite-valued propositional Gödel logics, and that it is ax-
iomatized by intuitionistic propositional logic IPL plus the
schema (A → B)∨ (B → A). IPL is contained in all Gödel
logics (finite- or infinite-valued).

In the first-order case, the relationships are somewhat
more involved. First of all, let us note that Intuitionistic
predicate logic IL is contained in all first-order Gödel log-
ics, since the axioms and rules of IL are sound for the Gödel
truth functions. As a consequence, we will be able to use
any intuitionistically sound rules and intuitionistically valid
formulas when working in any of the Gödel logics.

Proposition 3.1 (1) Gm ) Gm+1, (2) Gm ) G↑ ) GR,
(3) Gm ) G↓ ) GR.

Proof. The only nontrivial part is proving that the con-
tainments are strict. For this note that (A1 → A2)∨ . . .∨
(Am → Am+1) is valid in Gm but not in Gm+1. Furthermore,
let C↑ = ∃x(A(x)→∀yA(y)) and C↓ = ∃x(∃yA(y)→ A(x)).
C↓ is valid in all Gm and in G↑ and G↓; C↑ is valid in all Gm

and in G↑, but not in G↓; neither is valid in GR [3, Corol-
lary 2.9]. 2

The formulas C↑ and C↓ are of some importance in the
study of first-order infinite-valued Gödel logics. C↑ ex-
presses the fact that every infimum in the set of truth values
is a minimum, and C↓ states that every supremum (except
possibly 1) is a maximum. The only three quantifier shift-
ing rules which are not intuitionistically valid are:

∀x(A(x)∨B) → (∀xA(x)∨B)
(B→∃xA(x)) → ∃x(B→ A(x))
(∀xA(x)→ B) → ∃x(A(x)→ B)

(S1)
(S2)
(S3)

(x is not free in B.) Of these, S1 is valid in any Gödel logic.
S2 and S3 imply C↓ and C↑, respectively (take ∃yA(y) and
∀yA(y), respectively, for B). S2 and S3 are, respectively,
both valid in G↑, invalid and valid in G↓, and both invalid
in GR. G↑ is thus the only Gödel logic where every formula
is equivalent to a prenex formula. This also implies that
G↑ 6= G↓. In fact, we have G↓ ( G↑; this follows from the
following theorem.

Theorem 3.2 G↑ =
⋂

m≥2 Gm

Proof. By Proposition 3.1, G↑ ⊆
⋂

m≥2 Gm. We now
show the reverse inclusion. Since all quantifier shift-
ing rules are valid in G↑, any formula A is equivalent to
a prenex formula. For any given prenex formula A ≡
Q1x1 . . .Qnxn B(x̄) (B quantifier free) we may define the
Herbrand form AH of A as usual as ∃xi1 . . .∃xim B(t1, . . . , tn),
where {xi j : 1≤ j ≤ m} is the set of existentially quantified
variables in A, and ti is xi j if i = i j, or is fi(xi1 , . . . ,xik) if xi

is universally quantified and k = max{ j : i j < i}. We will
write B(t1, . . . , tn) as BF(xi1 , . . . ,xim) if we want to empha-
size the free variables.

Lemma 3.3 G↑ |= A iff G↑ |= AH .

Proof. If: Suppose that G↑ 2 A. In G↑, every infimum is
a minimum, i.e., if infDistrIA(x) = v then for some d ∈ D,
I(A(d)) = v. Hence, we can extend I by interpretations for
the fi as in the classical case. Only if: Obvious. 2

It now suffices to show that if G↑ 2 A, where A is ex-
istential, then Gm 2 A for some m. For this we need the
following

Lemma 3.4 Given I = 〈D,s〉 and v < 1, define
Iv = 〈D,sv〉 where sv(P)(d1, . . . ,dn) = I(P(d1, . . . ,dn)) if
I(P(d1, . . . ,dn)) ≤ v and = 1 otherwise. If A ∈ Frm(LI)
does not contain ∀, then Iv(A) = 1 if I(A) > v and Iv(A) =
I(A) if I(A)≤ v.

Proof. By induction on the complexity of A. 2

Now suppose there is an interpretation I s.t. I 2 A.
Then clearly supDistrIB(x̄) = v < 1 (where A ≡ ∃x̄B(x̄))
and there are only finitely many truth values below v in V↑,
say v = 1− 1/k. Construct Iv as in the previous lemma.
Since I(B(d̄)) ≤ v < 1, by the lemma Iv(B(d̄)) ≤ v and so
supDistrIvB(x̄) ≤ v. But Iv is a Gk+1 interpretation, and
Iv 2 A. 2

Corollary 3.5 Gm )
⋂

m Gm = G↑ ) G↓ ) GR
One basic but important result is that the set of validities

of GV only depends on the order type of V . Let V , V ′ be two
truth value sets, X a set of atomic formulas, and suppose
there is an order-preserving injection f : {I(B) : B ∈ X} →
V ′ which is so that f (1) = 1 and f (0) = 0. (Call any such
f a truth value injection on X .) By a simple induction on A,
we have:

Proposition 3.6 Let A be a quantifier free formula, and
X its set of atomic subformulas. If I, I′ are interpretations
on V , V ′, respectively, and f is a truth value injection on X,
then f (I(A)) = I′(A).

4 Order theoretical preliminaries

We will characterize the axiomatizable Gödel logics by
topological and order-theoretic properties of the underly-
ing truth value set. The most important of these properties
as regards axiomatizability is the existence of a non-trivial
dense linear subordering of the truth value set, i.e., a subset
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V ′ ⊆V , |V ′| ≥ 2, where for all u,v ∈V ′ with u < v there is
a w ∈ V ′ such that u < w < v. In this section we show that
there is such a dense subordering iff V is uncountable.

Dense linear orderings are connected to uncountable sets
via perfect sets. We begin by listing some results about
perfect sets from [11]. All the following notations, lem-
mas, theorems are carried out within the framework of Pol-
ish spaces, i.e., separable completely metrizable topological
spaces. For our discussion it is only necessary to know that
any closed subset of R (and hence, any truth-value set) is
such a Polish space.

Definition 4.1 A limit point of a topological space is a
point that is not isolated, i.e., for every open neighbour-
hood U of x there is a point y ∈ U with y 6= x. A space
is perfect if all its points are limit points.

It is obvious that intervals of the real line are perfect, but
there are perfect sets which are not intervals:

Example 4.2 The set of all numbers in the unit inter-
val which can be expressed in triadic notation using only
0 and 2 is called the Cantor set; it is a perfect subset of [0,1].

Proposition 4.3 For any perfect set P ⊆ R there is a
unique partition of R into countably many intervals such
that the intersection of P with each interval is either empty,
the entire interval or isomorphic to the Cantor set.

Proof. See [15], Proposition 1 and discussion. 2

To obtain a connection between uncountable sets and
perfect sets we first note that it is possible to embed the
Cauchy space into any perfect space, which yields

Lemma 4.4 If X is a nonempty perfect Polish space, then
the cardinality of X is 2ℵ0 ; thus all nonempty perfect sub-
sets of R have cardinality of the continuum.

Proof. [11, Corollary 6.3]. 2

For the other direction, we want to partition an uncount-
able set into a perfect kernel and a countable rest. This is
the well known Cantor-Bendixon Theorem:

Theorem 4.5 (Cantor-Bendixon) Let X be a Polish
space. Then X = P∪C, with P a perfect subset of X and C
countable open. P is called the perfect kernel of X.

As a corollary we obtain that any uncountable Polish
space contains a perfect set, and therefore has cardinal-
ity 2ℵ0 . Now we can prove the central theorem:

Theorem 4.6 A truth value set (i.e., a closed subset
of [0,1]) is uncountable iff it contains a non-trivial dense
linear subordering.

Proof. If: Every countable non-trivial dense linear order
has order type η , 1 + η , η + 1, or 1 + η + 1 [13, Corol-
lary 2.9], where η is the order type of Q. The completion
of any ordering of order type η has order type λ , the order
type of R [13, Theorem 2.30], thus the truth value set must
be uncountable.

Only if: We define a dense linear subordering for any
uncountable set. In fact we will give a dense linear subor-
dering of the perfect kernel.

Since every perfect subset of the real line is a union
of intervals and sets isomorphic to the Cantor set (Propo-
sition 4.3), it suffices to show the claim for those sets.
For intervals the claim is trivial. Now consider the bor-
der points in a Cantor set, i.e., points which can only
be approximated within the Cantor set from above or be-
low but not both. In the ternary notation these are the
points with a finite number of 0 or a finite number of 2,
i.e., their ternary expansions are either a = 0.a1a2 . . .an or
b = 0.b1b2 . . .bn2222 . . . Each border point can be approx-
imated by a sequence of inner points ak. For the k-th se-
quence element approximating a border point a we get ak

by appending 2k zeros and then a sequence of 020202 . . .
at the end (ak = 0.a1 . . .an(00)k02). For the k-th sequence
element approximating a border point b we define an ap-
proximating sequence bk by replacing the ternary expan-
sion starting from the 2k-th 2 with a sequence of 02’s
(bk = 0.b1 . . .bn(22)k02). The set of approximations of all
border points is a dense subset: If ak = 0.a1 . . .an(00)k02
and ak+1 = 0.a1 . . .an(00)k0002 are adjacent points in the
sequence, then a′ = 0.a1 . . .an(00)k00022222 . . . is a border
point with ak+1 < a′ < ak, hence there are infinitely many
points a′` between ak and ak+1 in the subset. Similarly for
adjacent elements of a b-sequence. The set of border points
is countable, therefore the set containing all the approxima-
tion sequences is countable and has all the necessary prop-
erties. 2

Note that for example 1/3 and 2/3 would not be in the
dense linear subordering, because between them there is no
point of the perfect set. We would replace 1/3 by a sequence
of inner points approximating 1/3 from below and replace
2/3 by a sequence of inner points approximating 2/3 from
above.

5 Axiomatizability results

Throughout this section, V is a truth value set which is
either finite or uncountable. Let GV be a Gödel logic with
such a truth value set. We show how to effectively asso-
ciate with each prenex formula A a quantifier-free formula
A∗ which is valid in GV if and only if A is valid. The ax-
iomatizability of GV then follows from the axiomatizability
of LC (in the infinite-valued case) and propositional Gm (in
the finite-valued case). Recall that AH stands for the Her-
brand normal form of A (see the proof of Theorem 3.2).

Lemma 5.1 If A is prenex and GV |= A, then GV |= AH .

Proof. Follows from the usual laws of quantification. 2

Our next main result will be Herbrand’s theorem for GV

for V uncountable. (By Theorem 4.6, V contains a dense
linear subordering.) Let A be a formula. The Herbrand uni-
verse U(A) of A is the set of all variable-free terms which
can be constructed from the set of function symbols occur-
ring in A. To prevent U(A) from being finite or empty we
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add a constant and a function symbol of positive arity if no
such symbols appear in A. The Herbrand base B(A) is the
set of atoms constructed from the predicate symbols in A
and the terms of the Herbrand universe. In the next theo-
rem we will consider the Herbrand universe of a formula
∃xA(x). We fix a non-repetitive enumeration A1, A2, . . . of
B(A), and let X` = {⊥,A1, . . . ,A`,>} (we may take > to be
a formula which is always = 1). A(t) is an `-instance of
A(x) if the atomic subformulas of A(t) are in X`.

Definition 5.2 An `-constraint is a non-strict linear or-
dering � of X` s.t. ⊥ is minimal and > is maximal. An
interpretation I fulfils the constraint � provided for all
B,C ∈ X`, B � C iff I(B) ≤ I(C). We say that the con-
straint �′ on X`+1 extends � if for all B,C ∈ X`, B �C iff
B�′ C.

Proposition 5.3 (a) Every I which fulfills �′ also fulfills
�. (b) if I, I′ fulfill�, then there is a truth value injection f
on X`, and f (I(A(t))) = I′(A(t)) for all `-instances A(t) of
A(x); in particular, I(A(t)) = 1 iff I′(A(t)) = 1.

Proof. (a) Obvious. (b) Follows from Proposition 3.6. 2

Lemma 5.4 Let A be a quantifier-free formula. If GV |=
∃xA(x) then there are tuples t1, . . . tn of terms in U(A), such
that GV |=

∨n
i=1 A(t i).

Proof. We construct a “semantic tree” T; i.e., a system-
atic representation of all possible order types of interpreta-
tions of the atoms Ai in the Herbrand base. T is a rooted
tree whose nodes appear at levels. Each node at level ` is
labelled with an `-constraint.

T is constructed in levels as follows: At level 0, the root
of T is labelled with the constraint ⊥<>. Let ν be a node
added at level ` with label �, and let T` be the set of terms
occurring in X`. Let (*) be: There is an interpretation I that
fulfils� so that for some `-instance A(t), I(A(t)) = 1. If (*)
obtains, ν is a leaf node of T, and no successor nodes are
added at level `+ 1. Note that by Proposition 5.3, any two
interpretations which fulfill � make the same `-instances of
A(t) true; hence ν is a leaf node if and only if there is an
`-instance A(t) s.t. I(A(t)) = 1 for all interpretations I that
fulfil �.

If (*) does not obtain, for each (`+ 1)-constraint �′ ex-
tending � we add a successor node ν ′ labelled with �′ to ν

at level `+1.
We now have two cases:
(1) T is finite. Let ν1, . . . ,νm be the leaf nodes of T of

levels `1, . . . , `m, each labelled with a constraint �1, . . . ,
�m. By (*), there are `i-instances A(t1), . . . , A(tm) so that
I(A(t i)) = 1 for any I which fulfills�i. It is easy to see that
every interpretation fulfills at least one of the�i. Hence, for
all I, I(A(t1)∨ . . .∨A(tm)) = 1, and so GV |=

∨m
i=1 A(t i).

(2) T is infinite. By König’s lemma, T has an infinite
branch with nodes ν0, ν1, ν2, . . . where ν` is labelled by �`

and is of level `. Each �`+1 extends �`, hence we can form
�=

⋃
` �`. Let V ′ ⊆ V be a non-trivial densely ordered

subset of V , let V ′ 3 c < 1, and let V ′′ = V ′ ∩ [0,c). V ′′

is clearly also densely ordered. Now let Vc be V ′′ ∪{0,1},
and let h : B(A(x))∪{⊥,>}→ Vc be an injection which is
so that, for all Ai,A j ∈ B(A(x)), h(Ai) ≤ h(A j) iff Ai � A j,
h(⊥) = 0 and h(>) = 1. We define an interpretation I =
〈U(A(x)),s〉 by: s( f )(t1, . . . , tn) = f (t1, . . . , tn) for all n-ary
function symbols f and s(P)(t1, . . . , tn) = h(P(t1, . . . , tn)) for
all n-ary predicate symbols P (clearly then, I(Ai) = h(Ai)).
By definition, I `-fulfills �` for all `. By (*), I(A(t)) <
1 for all `-instances A(t) of A(x), and by the definition of
Vc, I(A(t)) < c. Since every A(t) with t ∈ U(A(x)) is an
`-instance of A(x) for some `, we have I(∃xA(x)) ≤ c <
1.This contradicts the assumption that GV |= ∃xA(x). 2

The following lemma establishes sufficient conditions
for a logic to allow reverse Skolemization. By this we mean
the re-introduction of quantifiers in Herbrand expansions.
Here, by a logic L we mean a set of formulas that is closed
under modus ponens, generalization and substitutions (of
both formulas and terms). We call a formula A valid in L,
L |= A, if A ∈ L. The following three results follow from
[1] together with Lemma 5.4:

Lemma 5.5 Let L be a logic satisfying the following
properties:

(1) L |= A∨B ⇒ L |= B∨A
(2) L |= (A∨B)∨C ⇒ L |= A∨ (B∨C)
(3) L |= A∨B∨B ⇒ L |= A∨B
(4) L |= A(y) ⇒ L |= ∀xA(x)
(5) L |= A(t) ⇒ L |= ∃xA(x)
(6) L |= ∀x(A(x)∨B) ⇒ L |= ∀xA(x)∨B
(7) L |= ∃x(A(x)∨B) ⇒ L |= ∃xA(x)∨B.

(x is not free in B.) Let ∃xAF(x) be the Herbrand form of
the prenex formula QiA(yi), and let t1, . . . , tm be tuples of
terms in U(AF(x)). If L |=

∨m
i=1 AF(ti), then L |= QyA(y).

Corollary 5.6 If GV |= ∃xAF(x), then GV |= QyA(y).

Theorem 5.7 Let A ≡ QyB(y) be prenex. GV |= QyB(y)
iff there are tuples t1, . . . tm of terms in U(AH(x)), such that
GV |=

∨m
i=1 BF(t i).

Remark 5.8 An alternative proof of Herbrand’s theorem
can be obtained using the analytic calculus HIF (“Hyperse-
quent calculus for Intuitionistic Fuzzy logic”) [6].

Theorem 5.9 The prenex fragment of a Gödel logic
based on a truth value set V which is either finite or un-
countable infinite is axiomatizable. An axiomatization is
given by the standard axioms and rules for LC extended
by conditions (4)–(7) of Lemma 5.5 written as rules. For
the m-valued case add the characteristic axiom for Gm,
Gm ≡

∨m
i=1

∨m+1
j=i+1((Ai → A j)∧ (A j → Ai)).

Proof. Completeness: Let QyiA(y) be a prenex formula
valid in GV . Herbrand’s theorem holds for GV (for V in-
finite, this is Theorem 5.7; for V finite it follows from re-
sults in [2]), and so a Herbrand disjunction

∨n
i=1 AF(t i) is
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provable in LC or LC + Gm [8, Chapter 10.1]. QyiA(y) is
provable by Lemma 5.5.

Soundness: GV satisfies the conditions of Lemma 5.5 (in
particular, note that ∀x(A(x)∨B)→ (∀xA(x)∨B) with x not
free in B is valid in all Gödel logics). 2

6 Nonaxiomatizability results

In this section we show that the prenex fragments of first-
order Gödel logics where the set of truth values does not
contain a dense subset are not axiomatizable. We establish
the result first for the entire set of valid formulas by reduc-
ing the classical validity of a formula in all finite models
to the validity of a formula in Gödel logic (the set of these
formulas is not r.e. by Trakhtenbrot’s Theorem). We then
strengthen the result by showing that the image of the trans-
lation from the prenex fragment of classical logic to Gödel
logic is equivalent to a prenex formula.

Theorem 6.1 If V is countably infinite, then GV is not
axiomatizable.

Proof. By Theorem 4.6, V is countably infinite iff it is
infinite and does not contain a non-trivial densely ordered
subset. We show that for every sentence A there is a sen-
tence Ag s.t. Ag is valid in GV iff A is true in every finite
(classical) first-order structure.

We define Ag as follows: Let P be a unary and L be a bi-
nary predicate symbol not occurring in A and let Q1, . . . , Qn

be all the predicate symbols in A. We use the abbreviations
x∈ y≡¬¬L(x,y) and x≺ y≡ (P(y)→ P(x))→ P(y). Note
that for any interpretation I, I(x ∈ y) is either 0 or 1, and as
long as I(P(x)) < 1 for all x (in particular, if I(∃zP(z)) <
1), we have I(x ≺ y) = 1 iff I(P(x)) < I(P(y)). Let Ag ≡{

S∧ c1 ∈ 0∧ c2 ∈ 0∧ c2 ≺ c1∧
∀i

[
∀x,y∀ j∀k∃zK∨∀x¬(x ∈ i)

] }
→ (A′∨∃uP(u))

where S is the conjunction of the standard axioms for 0,
successor and ≤, with double negations in front of atomic
formulas,

K ≡ ( j ≤ i∧ x ∈ j∧ k ≤ i∧ y ∈ k∧ x ≺ y)→
→ (z ∈ s(i)∧ x ≺ z∧ z≺ y)

and A′ is A where every atomic formula is replaced by its
double negation, and all quantifiers are relativized to the
predicate R(i)≡ ∃x(x ∈ i).

Intuitively, L is a predicate that divides a subset of the
domain into levels, and x ∈ i means that x is an element
of level i. P orders the elements of the domain which fall
into one of the levels in a subordering of the truth values.
The idea is that for any two elements in a level ≤ i there is
an element in level i + 1 which lies strictly between those
two elements in the ordering given by ≺. If this condition
cannot be satisfied, the levels above i are empty. Clearly,
this condition can be satisfied in an interpretation I only for

finitely many levels if V does not contain a dense subset,
since if more than finitely many levels are non-empty, then⋃

i{I(P(d)) : I |= d ∈ i} gives a dense subset. By relativiz-
ing the quantifiers in A to the indices of non-empty levels,
we in effect relativize to a finite subset of the domain. We
make this more precise:

Suppose A is classically false in some finite structure I.
W.l.o.g. we may assume that the domain of this structure is
the naturals 0, . . . , n. We extend I to a GV -interpretation
Ig with domain N as follows: Since V contains infinitely
many values, we can choose c1, c2, L and P so that ∃x(x∈ i)
is true for i = 0, . . . , n and false otherwise, and so that
supDistrIgP(x) < 1. The number-theoretic symbols re-
ceive their natural interpretation. The antecedent of Ag

clearly receives the value 1, and the consequent receives
supDistrIgP(x) < 1, so Ig 2 Ag.

Now suppose that I 2 Ag. Then I(∃xP(x)) < 1 and so
supDistrIP(x) < 1. In this case, I(x≺ y) = 1 iff I(P(x)) <
I(P(y)), so ≺ defines a strict order on the domain of I. It
is easily seen that in order for the value of the antecedent
of Ag under I to be greater than that of the consequent,
it must be = 1 (the values of all subformulas are either
≤ supDistrIP(x) or = 1). For this to happen, of course,
what the antecedent is intended to express must actually be
true in I, i.e., that x ∈ i defines a series of disjoint levels
and that for any i, either level i + 1 is empty or for all x,
y s.t. x ∈ j, y ∈ k with j,k ≤ i and x ≺ y there is a z with
x ≺ z ≺ y and z ∈ i + 1. To see this, consider the relevant
part of the antecedent, B = ∀i

[
∀x,y∀ j∀k∃zK∨∀x¬(x ∈ i)

]
.

If I(B) = 1, then for all i, either I(∀x,y∀ j∀k∃zK) = 1 or
I(∀x¬(x ∈ i)) = 1. In the first case, we have I(∃zK) = 1
for all x, y, j, and k. Now suppose that for all z, I(K) < 1,
yet I(∃zK) = 1. Then for at least some z the value of that
formula would have to be > supDistrIP(z), which is im-
possible. Thus, for every x, y, j, k, there is a z such that
I(K) = 1. But this means that for all x, y s.t. x ∈ j, y ∈ k
with j,k≤ i and x≺ y there is a z with x≺ z≺ y and z∈ i+1.

In the second case, where I(∀x¬(x ∈ i)) = 1, we have
that I(¬(x ∈ i)) = 1 for all x, hence I(x ∈ i) = 0 and level i
is empty.

Since V contains no dense subset, from some finite level
i onward, the levels must be empty. Of course, i > 0 since
c1 ∈ 0. Thus, A is false in the classical interpretation Ic

obtained from I by restricting I to the domain {0, . . . , i−1}
and Ic(Q) = I(¬¬Q) for atomic Q. 2

This shows that no infinite-valued Gödel logic whose set
of truth values does not contain a dense subset is axioma-
tizable. We strengthen this result to show that the prenex
fragments are likewise not axiomatizable. This is done by
showing that if A is prenex, then there is a formula AG which
is also prenex and which is valid in GV iff Ag is. Since not
all quantifier shifting rules are generally valid, we have to
prove that in this particular instance there is a prenex for-
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mula which is valid in GV iff Ag is.

Theorem 6.2 If V is countably infinite, the prenex frag-
ment of GV is not axiomatizable.

Proof. By the proof of Theorem 6.1, a formula A is true
in all finite models iff GV |= Ag. Ag is of the form B →
(A′ ∨∃uP(u)). We show that Ag is equivalent in GV to a
prenex formula.

Call a formula A in which every atomic formula occurs
negated a classical formula. It is easy to see that for any I
and A(x) with I(A(d)) ∈ {0,1} for all d, I(∀xA(x)→ B) =
I(∃xA(x) → B) and I(B → ∃xA(x)) = I(∃x(B → A(x)).
Hence, any classical formula is equivalent to a prenex for-
mula; let A0 be a prenex form of A′. Since all quantifier
shifts for conjunctions are valid, the antecedent B of Ag is
equivalent to a prenex formula Q1x1 . . .QnxnB0(x1, . . . ,xn).
Hence, Ag is equivalent to QxB0(x)→ (A0∨∃uP(u)).

Let Q′
i be ∃ if Qi is ∀, and ∀ if Qi is ∃, let C ≡ A0 ∨

∃uP(u), and v = I(∃uP(u))). We show that QxB0(x)→C
is equivalent to Q

′
x(B0(x) → C) by induction on n. Let

QxB0 ≡ Q1x1 . . .QixiB1(d1, . . . ,di−1,xi). Since quantifier
shifts for ∃ in the antecent of a conditional are valid,
we only have to consider the case Qi = ∀. Suppose
I(∀xi B1(d,xi)→C) 6= I(∃xi(B1(d,xi)→C). This can only
happen if I(∀xi B1(d,xi)) = I(C) < 1 but I(B1(d,c)) >
I(C) ≥ v for all c. However, it is easy to see by inspect-
ing B that I(B1(d,c)) is either = 1 or ≤ v.

Now we show that I(B0(d) → (A0 ∨ ∃uP(u))) =
I(∃u(B0(d)→ (A0∨P(u)))). If I(A0) = 1, then both sides
equal = 1. If I(A0) = 0, then I(A0∨∃uP(u)) = v. The only
case where the two sides might differ is if I(B0(d)) = v but
I(A0 ∨P(c)) = I(P(c)) < v for all c. But inspection of B0

shows that I(B0(t)) = 1 or = I(P(e)) for some e ∈ d (the
only subformulas of B0(d) which do not appear negated are
of the form e′ ≺ e). Hence, if I(B0(d)) = v, then for some e,
I(P(e)) = v.

Last we consider the quantifiers in A0 ≡ QyA1. Since
A0 is classical, I(B0(d) → (A0 ∨P(c))) = I(Qy(B0(d) →
(A1∨P(c)))) for all d, c. To see this, first note that shifting
quantifiers across ∨, and shifting universal quantifiers out of
the consequent of a conditional is always possible. Hence it
suffices to consider the case of ∃. I(∃yA2) is either = 0 or
= 1. In the former case, both sides equal I(B0(d)→ P(d)),
in the latter, both sides equal 1. 2

In summary, we obtain the following characterization of ax-
iomatizability of prenex fragments of Gödel logics:

Theorem 6.3 The prenex fragment of GV is axiomatiz-
able if and only if V is finite or uncountable.

7 Conclusion

Our characterization relates in an interesting way to com-
pactness results of entailment relations of Gödel logics as

given in [5]: Exactly those Gödel logics have an axiomati-
zable prenex fragment which also have a compact proposi-
tional logic.

For full first order Gödel logics the situation is quite sim-
ilar in the sense that the truth value set must be finite or
uncountable to allow axiomatization, but in addition it is
necessary that 0 either be in the perfect kernel of the truth
value set or be isolated. Two different logics correspond
to these conditions, which have the same prenex fragment.
Consequently there are Gödel logics where the prenex frag-
ment is axiomatizable, but the full logic does not allow a
recursive axiomatization. These are the logics of truth value
sets which contain an uncountable subset, but 0 is neither in
the perfect kernel nor isolated. These results have been ob-
tained in [12] and will be reported in a forthcoming article
by the authors.
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